Exercise 15

Convert each of the following Volterra integral equation in 9-16 to an equivalent IVP:

$$
u(x)=1+2 \int_{0}^{x}(x-t)^{3} u(t) d t
$$

Solution

Differentiate both sides with respect to x.

$$
u^{\prime}(x)=2 \frac{d}{d x} \int_{0}^{x}(x-t)^{3} u(t) d t
$$

Use the Leibnitz rule to differentiate the integral.

$$
\begin{aligned}
& =2\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{3} u(t) d t+(0)^{3} u(x) \cdot 1-(x)^{3} u(0) \cdot 0\right] \\
& =2\left[\int_{0}^{x} 3(x-t)^{2} u(t) d t\right] \\
& =6 \int_{0}^{x}(x-t)^{2} u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{aligned}
u^{\prime \prime}(x) & =6 \frac{d}{d x} \int_{0}^{x}(x-t)^{2} u(t) d t \\
& =6\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t)^{2} u(t) d t+(0)^{2} u(x) \cdot 1-(x)^{2} u(0) \cdot 0\right] \\
& =6\left[\int_{0}^{x} 2(x-t) u(t) d t\right] \\
& =12 \int_{0}^{x}(x-t) u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{aligned}
u^{\prime \prime \prime}(x) & =12 \frac{d}{d x} \int_{0}^{x}(x-t) u(t) d t \\
& =12\left[\int_{0}^{x} \frac{\partial}{\partial x}(x-t) u(t) d t+(0) u(x) \cdot 1-(x) u(0) \cdot 0\right] \\
& =12 \int_{0}^{x} u(t) d t
\end{aligned}
$$

Differentiate both sides with respect to x again.

$$
\begin{aligned}
& u^{(\mathrm{iv})}(x)=12 \frac{d}{d x} \int_{0}^{x} u(t) d t \\
&=12 u(x) \\
& u^{(\mathrm{iv})}-12 u=0
\end{aligned}
$$

The initial conditions to this ODE are found by plugging in $x=0$ into the original integral equation,

$$
u(0)=1+2 \int_{0}^{0}(0-t)^{3} u(t) d t=1
$$

and the formula for u^{\prime},

$$
u^{\prime}(0)=6 \int_{0}^{0}(0-t)^{2} u(t) d t=0
$$

and the formula for $u^{\prime \prime}$,

$$
u^{\prime \prime}(0)=12 \int_{0}^{0}(0-t) u(t) d t=0
$$

and the formula for $u^{\prime \prime \prime}$,

$$
u^{\prime \prime \prime}(0)=12 \int_{0}^{0} u(t) d t=0
$$

Therefore, the equivalent IVP is

$$
u^{(\mathrm{iv})}-12 u=0, u(0)=1, u^{\prime}(0)=0, u^{\prime \prime}(0)=0, u^{\prime \prime \prime}(0)=0 .
$$

[TYPO: The answer at the back of the book reads:

$$
u^{\mathrm{iv}}(x)-12 u(x)=0, u(0)=1, u^{\prime}(0)=u^{\prime \prime}(0)=u^{\prime \prime \prime}=0
$$

Parentheses need to be placed around "iv" and (0) needs to be placed after $u^{\prime \prime \prime}$.]

